Abstract

In this paper, we develop accelerated sequential and stage procedures for estimating the mean of an inverse Gaussian distribution when the population coefficient of variation is known. The problems of minimum risk and bounded risk point estimation are handled. The estimation procedures are developed under an interesting weighted squared-error loss function and our aim is to control the associated risk functions. In spite of the usual estimator, i.e., the sample mean, Searls (1964) estimator is utilized for the purpose of estimation. Second-order asymptotics are obtained for the expected sample size and risk associated with the proposed multi-stage procedures. Further, it is established that the Searls’ estimator dominates the usual estimator (sample mean) under the proposed procedures. Extensive simulation analysis is carried out in support of the encouraging performances of the proposed methodologies and a real data example is also provided for illustrative purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.