Abstract

Activation of xylitic brown-coal coke XBC 900 with water vapour and carbon dioxide, when modified by partial replacement of the basic activating agent with 10% oxygen at a lower temperature, results in products with an increased microporosity. Thus, oxygen as activating agent for xylitic coke develops, preferentially, micropores, and this property is more strongly pronounced for oxygen than for the carbon dioxide and water vapour. A drawback to the process of activation with oxygen, i.e. blockage of initially formed micropores by chemisorbed oxygen, can be eliminated by removal of the chemisorbed oxygen by heat treatment in argon (multi-stage oxygen activation). This increases the micropore volume of the xylitic brown-coal coke XBC 900 activated with oxygen to 70% total burnoff, from about 0.2 cm 3 g −1 to almost 0.5 cm 3 g −1. The increase of the total adsorptive volume (micropores and mesopores) of these samples is from 0.45 cm 3 g −1 to over 0.6 cm 3 g −1 and the surface area S BET in benzene increases from 650 m 2 g −1 to over 1200 m 2 g −1. These last values are close to the limiting conditions for 70% activation obtainable for this material. Temperature of carbonization of the brown-coal char has a strong effect on the possibility of pore development through further activation. Multi-stage oxygen activation of xylitic brown-coal semicoke XBC 500 produces a material with a smaller micropore volume and a lower surface area than that of xylitic brown-coal coke XBC 900 similarly activated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.