Abstract

We present a multi-head spray pyrolysis system and its application in high-throughput combinatorial synthesis for research of solid Li-ion conductors. Each spraying nozzle is fed with a separate precursor solution. The overlap of areas that are sprayed leads to unprecedented composition flexibility of the films obtained after pyrolysis. Thus, a library with a continuous composition spread of a Li-La-P-O model system is formed. The Li-ion conduction was determined on 169 cells of the library, using high throughput impedance measurements in a controlled environment. While the activation energies that were found were relatively small, Li-ion conduction was still low. This low mobility is hypothesized to originate from the sub-optimal occupation of Li sites in the non-stoichiometric materials' lattices, and/or porosity and tortuosity issues, which in turn, reduces their effective concentration and contribution to ion transport. In addition, porosity and tortuosity in sprayed electrolyte causes random orientation of the grains and grain boundaries in the solid followed by the random diffusion scattering of Li-ions and low Li-ions conductivity, despite low apparent activation energy of conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.