Abstract
Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological removal (attenuation) of nitrogen (N) is particularly difficult due to its reactivity and ubiquity. Here a multi-isotope approach is developed to distinguish N sources and sinks within groundwater affected by complex industrial pollution. Samples were collected from 70 wells across the two aquifers underlying a historic industrial area in Belgium. Below the industrial site the groundwater contained up to 1000 mg N l−1 ammonium (NH4+) and 300 mg N l−1 nitrate (NO3−), while downgradient concentrations decreased to ∼1 mg l−1 DIN ([DIN] = [NH4+N] + [NO3−N] + [NO2−N]). Mean δ15N-DIN increased from ∼2‰ to +20‰ over this flow path, broadly confirming that biological N attenuation drove the measured concentration decrease. Multi-variate analysis of water chemistry identified two distinct NH4+ sources (δ15NNH4+ from −14‰ and +5‰) within the contaminated zone of both aquifers. Nitrate dual isotopes co-varied (δ15N: −3‰ – +60‰; δ18O: 0‰ – +50‰) within the range expected for coupled nitrification and denitrification of the identified sources. The fact that δ15NNO2− values were 50‰–20‰ less than δ15NNH4+ values in the majority of wells confirmed that nitrification controlled N turnover across the site. However, the fact that δ15NNO2− was greater than δ15NNH4+ in wells with the highest [NH4+] shows that an autotrophic NO2− reduction pathway (anaerobic NH4+ oxidation or nitrifier-denitrification) drove N attenuation closest to the contaminant plume. This direct empirical evidence that both autotrophic and heterotrophic biogeochemical processes drive N attenuation in contaminated aquifers demonstrates the power of multiple N isotopes to untangle N cycling in highly complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.