Abstract

Supervised learning-based methods for source localization, being data driven, can be adapted to different acoustic conditions via training and have been shown to be robust to adverse acoustic environments. In this paper, a convolutional neural network (CNN) based supervised learning method for estimating the direction of arrival (DOA) of multiple speakers is proposed. Multi-speaker DOA estimation is formulated as a multi-class multi-label classification problem, where the assignment of each DOA label to the input feature is treated as a separate binary classification problem. The phase component of the short-time Fourier transform (STFT) coefficients of the received microphone signals are directly fed into the CNN, and the features for DOA estimation are learnt during training. Utilizing the assumption of disjoint speaker activity in the STFT domain, a novel method is proposed to train the CNN with synthesized noise signals. Through experimental evaluation with both simulated and measured acoustic impulse responses, the ability of the proposed DOA estimation approach to adapt to unseen acoustic conditions and its robustness to unseen noise type is demonstrated. Through additional empirical investigation, it is also shown that with an array of M microphone our proposed framework yields the best localization performance with M-1 convolution layers. The ability of the proposed method to accurately localize speakers in a dynamic acoustic scenario with varying number of sources is also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.