Abstract

Lake water resources in arid areas play an important role in regional resource and environmental management. Therefore, to master the dynamic changes in lake water resources in arid areas, the laser altimetry satellite and land resource satellite were used to interpret the changes in water level and the areas of alpine lakes and non-alpine lakes. The dynamic changes in the lake and their relationship with glacial meltwater, precipitation, and runoff of the lake basin were analyzed using the unary linear regression equation, the ratio of glacier area to lake area (G–L ratio), and the ratio of lake basin area to lake area (supply coefficient). The results were as follows: the changes in alpine lakes were closely related to the supply coefficient (basin/lake area ratio) but weakly related to the G–L ratio (glacier/lake area ratio). In addition, the spatial pattern of lake change was consistent with that of climate change. There was a strong correlation between the lake, precipitation, and temperature during the snowmelt period. Thus, it can be seen that the changes in the lake were caused by precipitation, glacial melt, snowmelt, and other multi-factors. Therefore, this study on the changes in water resources in different types of lakes and their influencing factors provides data support for water resources managers to evaluate the health and sustainable utilization of the ecological environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call