Abstract
Blockchain-based applications are becoming more and more widespread in business operations. In view of the shortcomings of existing enterprise blockchain evaluation methods, this paper proposes a multi-source heterogeneous blockchain data quality evaluation model for enterprise business activities, so as to achieve efficient evaluation of business activity information consistency, credibility and value. This paper proposes a multi-source heterogeneous blockchain data quality assessment method for enterprise business activities, aiming at the problems that most of the data in enterprise business activities come from different data sources, information representation is inconsistent, information ambiguity between the same block chain is serious, and it is difficult to evaluate the consistency, credibility and value of information. The method firstly proposes an entity information representation method based on the Representation learning for fusing entity category information (CEKGRL) model, which introduces the triad structure of related entities in blockchain, then associates them with enterprise business activity categories, and carries out similarity calculation through contextual information to achieve blockchain information consistency assessment. After that, a trustworthiness characterization method is proposed based on information sources, information comments, and information contents, to obtain the trustworthiness assessment of the business. Finally, based on the information trustworthiness characterization, a value assessment method is introduced to assess the total value of business activity information in the blockchain, and a blockchain quality assessment model is constructed. The experimental results show that the proposed model has great advantages over existing methods in assessing inter-block consistency, intra-block activity information trustworthiness and the value of blockchain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.