Abstract

In partitioned fluid–structure interaction simulations, the flow equations and the structural equations are solved separately. As a result, a coupling algorithm is needed to enforce the equilibrium on the fluid–structure interface in cases with strong interaction. This coupling algorithm performs coupling iterations between the solver of the flow equations and the solver of the structural equations. Current coupling algorithms couple one flow solver with one structural solver. Here, a new class of multi-solver quasi-Newton coupling algorithms for unsteady fluid–structure interaction simulations is presented. More than one flow solver and more than one structural solver are used for a single simulation. The numerical experiments demonstrate that the duration of a simulation decreases as the number of solvers is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.