Abstract

Increasing research interests have been paid to understand the factors controlling soil nitrogen (N) stocks under diverse environmental conditions and forest thinning regimes. This study investigated soil N stocks across 13 temperate forests, each of which received three thinning intensities (unthinned control, 15–30 %, and 30–50 % basal area removals) under varying pre-treatment conditions (altitude, slope, soil pH, soil moisture, stand age, stand density, diameter at breast height, and tree height). The total N stored in the forest floor (L, F, and H layers) and mineral soils (0–10, 10–20, and 20–30 cm) was determined 1, 4, and 7 years after thinning. Given the various site conditions and thinning regimes, a standardized effect size was used to analyze the influences of thinning on N stocks. The N stocks (Mg N ha−1) of the forest floor and at 0–10, 10–20, and 20–30 cm mineral soil depths were 0.02–0.46, 0.32–3.21, 0.29–3.03, and 0.25–2.54 across all studied forests, respectively. The averaged effect sizes indicated decrease in forest floor N stocks and increase in mineral soil N stocks under thinning due to the reduced litterfall and eventual input of thinning residues. Thinning intensity negatively affected the effect sizes for the N stocks (P < 0.05), suggesting that excessively heavy thinning may be inappropriate for retaining forest soil N. However, multimodel inference showed that soil pH (relative importance = 1.00) and stand age (relative importance = 0.42) had the largest influence on the effect sizes for forest floor and mineral soil N stocks. This pattern suggests that the effects of thinning on soil N stocks might vary with pre-treatment conditions, even more than thinning intensities and recovery time; therefore, thinning to manage forest soil N should consider pre-treatment environmental conditions in addition to thinning regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.