Abstract

We present the first near-exact analysis of an M/PH/k queue with m > 2 preemptive-resume priority classes. Our analysis introduces a new technique, which we refer to as Recursive Dimensionality Reduction (RDR). The key idea in RDR is that the m-dimensionally infinite Markov chain, representing the m class state space, is recursively reduced to a 1-dimensionally infinite Markov chain, that is easily and quickly solved. RDR involves no truncation and results in only small inaccuracy when compared with simulation, for a wide range of loads and variability in the job size distribution. Our analytic methods are then used to derive insights on how multi-server systems with prioritization compare with their single server counterparts with respect to response time. Multi-server systems are also compared with single server systems with respect to the effect of different prioritization schemes--smart prioritization (giving priority to the smaller jobs) versus stupid prioritization (giving priority to the larger jobs). We also study the effect of approximating m class performance by collapsing the m classes into just two classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.