Abstract

This study investigates the combination of three sensors to improve in-process monitoring of the liquid bridge between the feedstock wire and melt pool in hot-wire Directed Energy Deposition using Laser Beam. The stability of the deposition process relies on the transfer of metal between the molten feedstock wire and melt pool. Therefore, monitoring the condition of the liquid bridge and the interaction between the feedstock wire and melt pool is crucial. By utilizing a laser-optics-integrated visible range optical spectrometer and electrical sensors measuring voltage and current, relevant process changes and indications of instabilities were detected. Combined information from the current sensor and the spectrometer provided a better understanding of the process and helped to identify deviations leading to unstable deposition modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.