Abstract

Thermal infrared imagery plays an important role in a variety of fields, such as surface temperature inversion and urban heat island effect analysis, but the spatial resolution has severely restricted the potential for further applications. Data fusion is defined as data combination using multiple sensors, and fused information often has better results than when the sensors are used alone. Since multi-resolution analysis is considered an effective method of image fusion, we propose an MTF-GLP-TAM model to combine thermal infrared (30 m) and multispectral (10 m) information of SDGSAT-1. Firstly, the most relevant multispectral bands to the thermal infrared bands are found. Secondly, to obtain better performance, the high-resolution multispectral bands are histogram-matched with each thermal infrared band. Finally, the spatial details of the multispectral bands are injected into the thermal infrared bands with an MTF Gaussian filter and an additive injection model. Despite the lack of spectral overlap between thermal infrared and multispectral bands, the fused image improves the spatial resolution while maintaining the thermal infrared spectral properties as shown by subjective and objective experimental analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.