Abstract

A new method of multi-sensor signal analysis for fault diagnosis of centrifugal pump based on parallel factor analysis (PARAFAC) and support vector machine (SVM) is proposed. The single-channel vibration signal is analyzed by Continuous Wavelet Transform (CWT) to construct the time–frequency representation. The multiple time–frequency data are used to construct the three-dimension data matrix. The 3-level PARAFAC method is proposed to decompose the data matrix to obtain the six features, which are the time domain signal (mode 3) and frequency domain signal (mode 2) of each level within the three-level PARAFAC. The eighteen features from three direction vibration signals are used to test the data processing capability of the algorithm models by the comparison among the CWT-PARAFAC-IPSO-SVM, WPA-PSO-SVM, WPA-IPSO-SVM, and CWT-PARAFAC-PSO-SVM. The results show that the multi-channel three-level data decomposition with PARAFAC has better performance than WPT. The improved particle swarm optimization (IPSO) has a great improvement in the complexity of the optimization structure and running time compared to the conventional particle swarm optimization (PSO.) It verifies that the proposed CWT-PARAFAC-IPSO-SVM is the most optimal hybrid algorithm. Further, it is characteristic of its robust and reliable superiority to process the multiple sources of big data in continuous condition monitoring in the large-scale mechanical system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call