Abstract

We present a new generalization of the classical trisecant lemma. Our approach is quite different from previous generalizations [8, 10, 1, 2, 4, 7]. Let X be an equidimensional projective variety of dimension d. For a given k ≤ d + 1, we are interested in the study of the variety of k-secants. The classical trisecant lemma just considers the case where k = 3 while in [10] the case k = d + 2 is considered. Secants of order from 4 to d + 1 provide service for our main result. In this paper, we prove that if the variety of k-secants (k ≤ d +1) satisfies the following three conditions: (i) through every point in X, there passes at least one k-secant, (ii) the variety of k-secants satisfies a strong connectivity property that we define in the sequel, (iii) every k-secant is also a (k +1)-secant; then the variety X can be embedded into ℙd+1. The new assumption, introduced here, that we call strong connectivity, is essential because a naive generalization that does not incorporate this assumption fails, as we show in an example. The paper concludes with some conjectures concerning the essence of the strong connectivity assumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.