Abstract
As the mobile energy storage and load-side demand response device, energy dispatch potential of electric vehicles (EVs) in energy supply system is yet to be fully explored. This study presented a multi-energy incorporating integrated energy system (IES) with carbon capture system and power-to-gas for residential building and EVs, five optimal scheduling strategies considering EVs charging/discharging, co-dispatch of EVs and IES, and stationary battery characteristic are proposed. Optimization objectives, such as annual total cost (ATC), annual carbon emission (ACE) and total grid interaction (TGI), considering configuration and operation scheduling for IES under five scenarios can be determined through augmented ε-constraint and entropy weight-TOPSIS method, furthermore the impacts of carbon tax, battery degradation cost and the number of EVs on system performances are also studied. The results indicated that optimal ATC of IES is 6361.8 thousand yuan in Case 4 considering EVs ordered charging/discharging, optimum ACE and TGI are 4711.5 t and 2850.7 MWh in Case 5 with EVs ordered charging/discharging and state of fixed battery. Peak values and durations for charging/discharging electricity of fixed battery decrease in Case 4 and 5. This research offers a innovative idea for optimal design and operational management of integrated energy system with EVs orderly charging/discharging.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.