Abstract

The functional magnetic resonance imaging (fMRI) is a noninvasive technique for studying brain activity, such as brain network analysis, neural disease automated diagnosis and so on. However, many existing methods have some drawbacks, such as limitations of graph theory, lack of global topology characteristic, local sensitivity of functional connectivity, and absence of temporal or context information. In addition to many numerical features, fMRI time series data also cover specific contextual knowledge and global fluctuation information. Here, we propose multi-scale time-series kernel-based learning model for brain disease diagnosis, based on Jensen-Shannon divergence. First, we calculate correlation value within and between brain regions over time. In addition, we extract multi-scale synergy expression probability distribution (interactional relation) between brain regions. Also, we produce state transition probability distribution (sequential relation) on single brain regions. Then, we build time-series kernel-based learning model based on Jensen-Shannon divergence to measure similarity of brain functional connectivity. Finally, we provide an efficient system to deal with brain network analysis and neural disease automated diagnosis. On Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, our proposed method achieves accuracy of 0.8994 and AUC of 0.8623. On Major Depressive Disorder (MDD) dataset, our proposed method achieves accuracy of 0.9166 and AUC of 0.9263. Experiments show that our proposed method outperforms other existing excellent neural disease automated diagnosis approaches. It shows that our novel prediction method performs great accurate for identification of brain diseases as well as existing outstanding prediction tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call