Abstract

The stable positions, binding energies, and dynamic properties of Li impurity in the presence of a 90° partial dislocation in Si have been studied by using the multi-scale simulation method. The corresponding results are compared with the defect-free Si crystal in order to reflect how the dislocation defect affects the performances of Li-ion batteries (LIBs) at the atomic level. It is found that the inserted Li atom in the dislocation core and nearest regions is more stable, since the binding energies are 0.13 eV to 0.52 eV larger than the bulk Si. Moreover, it is easier for Li atom to diffuse into those defect areas and harder to diffuse out. Thus, Li dopant may tend to congregate in the dislocation core and nearest regions. On the other side, the 90° partial dislocation can glide in the {111} plane accompanied by the diffusion of Li impurity along the pentagon ring of core. In addition, the spacious heptagon ring of dislocation core can lower the migration barrier of Li atom from 0.63 eV to 0.34 eV, which will enhance the motion of the dopant. Therefore, the presence of 90° partial dislocations may provide a fast and favorable diffusion path for the congregated Li impurity, which finally facilitates the lithiation of LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.