Abstract
A multi-scale model is established to study the complex melting and solidification behaviors during the electron beam welding of an Al-Cu alloy. The model combines a macroscopic thermal-fluid algorithm for molten pool behavior and a microscopic cellular automaton algorithm for the microstructure evolution. The solidification parameters, including the thermal gradient and cooling rate, build a bridge between the macroscopic and microscopic simulations. The model is validated by comparing the experimental fusion profile results, microstructure, morphology, grain size and element distribution that result from different welding parameters. On the macroscopic scale, with an increase in beam current, the molten pool fluctuation intensity increases, the thermal gradient increases and the cooling rate decreases. On the microscopic scale, the grain growth process includes nucleation, growth and competitive growth. After solidification, the concentration of Cu on the grain boundaries is larger than that inside the grains. With increasing beam current, the grain size tends to increase, and the segregation ratio decreases. The power-law function between the grain size and cooling rate can be summarized as d∝CR−0.55, where d is the grain size and CR is the cooling rate. Moreover, the segregation ratio first increases and then decreases slowly with decreasing solidification time. We expect this study to provide a deeper understanding of how to control weld formation and microstructure and improve confidence in optimizing the actual welding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.