Abstract

A multi-scale peridynamic (PD) model was developed to simulate chloride penetrating process in concrete under drying-wetting cycles. The meso‑structure characteristics of concrete and advection-diffusion were considered simultaneously. The governing equations of chloride penetrating during drying-wetting cycles was originally established under the framework of PD theory. Subsequently, the corresponding boundary conditions for wetting and drying process were constructed. The accumulative effect of chloride under drying-wetting cycles was taken into account with the superposition method. Numerical examples demonstrate that the multi-scale PD model is robust and efficient in capturing the variation of chloride concentration and relative humidity. The results show that with the approach to the exposed surface, the differentials of relative humidity rise significantly. The chloride concentration is affected by positions of reference points and relative humidity. Namely, it increases first and then decrease or remain constant during every drying-wetting cycle. Notably, the maximum chloride concentration occurs in a region adjacent to exposed surface rather than on the exposed surface, which coincides well with the experimental phenomenon reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.