Abstract

Multi-scale convective organization in a Madden-Julian Oscillation (MJO) event that occurred during December 2006 and January 2007 was studied by global numerical experiments using explicit moist physics. The simulations successfully reproduced the eastward-propagating (∼5 m s-1) convective envelope of the MJO with a zonal scale of 5000-10,000 km, which included eastward-propagating (10-15 m s-1) disturbances (EPDs) and westward-propagating cloud clusters (CCs) with zonal scales of 1000-2000 km and O (100 km), respectively.The simulated EPDs were composed of CCs, with new clusters growing to the east of older ones. When the large-scale circulation associated with the MJO intensified, the EPDs formed well-organized squall-type clusters (rainbands). The dynamical structure of the simulated EPDs was reminiscent of moist Kelvin waves. Relevance of westward-propagating wave disturbances including cross-equatorial flow to convective organization in the EPDs was also suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.