Abstract

Urban wind resource assessments (WRAs) contribute to the effective exploitation of wind energy and thus are of significant importance to the sustainable development of cities. To improve the simulation accuracy of urban wind flow with high spatial resolution, this study implemented a multi-scale numerical assessment of the wind power potential in a highly-urbanized region with realistic terrain conditions by integrating the Reynolds-averaged Navier-Stokes (RANS) equations into the Weather Research and Forecasting (WRF) model with Building Effect Parameterization (WRF-BEP). The sensitivity analyses are first conducted to obtain an appropriate combination of physical parameterization schemes in the WRF-BEP model. Then, the wind tunnel tests are performed to validate the computational accuracy of urban wind flow using the RANS equations. Based on a close examination of the urban wind flow resulting from the coupled WRF-BEP and RANS simulations, the integration of micro-wind turbines into the building skin is not recommended in the highly-urbanized region. Furthermore, five optimum roof installation locations with low turbulence intensities (smaller than 18%) and high wind power densities (approximately 220 W/m2, 260 W/m2, 270 W/m2, 300 W/m2 and 400 W/m2, respectively) are identified. Finally, the important effects of the terrain conditions, planetary boundary layer (PBL) parameterization schemes and turbulence models on WRAs are discussed. The results of WRAs in this multi-scale numerical case study presented a systemic approach to effectively determine the installation locations of micro-wind turbines that possess the greatest potential to harness wind energy in a realistic highly-urbanized area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call