Abstract
Underwater images suffer from severe degradation due to the complicated environments. Though numerous approaches have been proposed, accurately correcting color bias meanwhile effectively enhancing contrast is still a difficult problem. In order to address this issue, a dedicated designed Multi-scale Network with Attention mechanism (MNA) is introduced in this work. Concretely, MNA contains four key characteristics: (a) setting more convolution layers in shallow flows, (b) letting connections from high-level to adjacent low-level stream progressively, (c) simplifying dual attention mechanism embedding it in conventional residual block, (d) exploiting channel attention module to fuse multi-scale information rather than conventional summation operation. Extensive experiments demonstrate that our MNA achieves better performance than some well-recognized technologies. Meanwhile, ablation study proves the effectiveness of each component in our MNA. In addition, extended applications demonstrate the improvement of our MNA in local feature points matching and image segmentation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.