Abstract

This paper considers the estimation of multi-scale multi-lag (MSML) channels. The MSML channel model is a good representation for wideband communication channels, such as underwater acoustic communication and radar. This model is characterized by a limited number of paths, each parameterized by a delay, Doppler scale, and attenuation factor. Herein, it is shown that an OFDM signal after passing through the MSML channel exhibits a low rank representation. This feature can be exploited to improve the channel estimation. By characterizing the received signal, it is shown that the MSML channel estimation problem can be adapted to a structured spectral estimation problem. The challenge is that the unknown frequencies are very close to each other due to the small values of Doppler scales. This feature can be employed to show that the data matrix is approximately low-rank. By exploiting structural features of the received signal, the Prony algorithm is modified to estimate the Doppler scales (close frequencies), delays and channel gains. Two strategies using convex and no-convex regularizers to remove noise from the corrupted signal are proposed. These algorithms are iterative based on the alternating direction method of multipliers. A bound on the reconstruction of the noiseless received signal provides guidance on the selection of the relaxation parameter in the optimizations. The performance of the proposed estimation strategies are investigated via numerical simulations, and it is shown that the proposed non-convex method offers up to 7 dB improvement in low SNR and the convex method offers up to 5 dB improvement in high SNR over prior methods for the MSML channel estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call