Abstract

In this paper, a multi-scale computational frame is proposed to simulate dynamics of the human left ventricle. First of all, a modified Level Set method is used to segment the cardiac magnetic resonance imaging and then reconstruct the 3D computational domain of the left ventricle. The Holzapfel-Ogdens nonlinear and anisotropic model is imposed to calculate the passive elastic response. The Fenton-Karma model with stimulus current is optimized to produce the reasonable membrane potential and intracellular calcium concentration. Based on the obtained calcium concentration, the active tension is calculated. Finally, the passive elastic response and the active tension of the left ventricle are coupled with the blood and the obtained fluid structure interaction is solved by the immersed boundary method. Our numerical results at end-diastole and end-systole are generally in good agreement with the clinical measurement and the earlier studies, which verifies the efficiency of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call