Abstract

The present contribution focuses on the analysis of diverse deformation mechanisms that impact the behaviour of PC/ABS blends using computational homogenisation. This includes analysing internal particle cavitation, PC/ABS interface debonding, and PC matrix shear-yielding. The goal is to investigate the optimal composition for specific applications and create tailored materials. The work involves establishing a microstructure Representative Volume Element, defining the constitutive description of both material phases, and explicitly modelling PC/ABS interfaces and matrix damage to achieve accurate predictions. A Python programme is devised to efficiently integrate zero-thickness cohesive interface elements around ABS particles, incorporating the PPR potential-based cohesive model to characterise the interface. Additionally, the finite strain visco-elastic visco-plastic constitutive model of the PC matrix is extended to incorporate a damage variable, addressing the shear-yielding failure mechanism. The PC/ABS blend’s thermomechanical response is homogenised using first-order hierarchical multi-scale analyses. The impact of considering the interface phase in the microstructure is assessed through various numerical analyses. The synergy between the constitutive models effectively captures the blend’s behaviour. These findings lay the foundation for broader applicability beyond PC/ABS blends, paving the way for future studies in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call