Abstract

High thermal conductivity is one important factor in the selection or development of ceramics or composite materials. Predicting the thermal conductivity would be useful to the design and application of such materials. In this paper, a multi-scale model is developed to predict the effective thermal conductivity in SiC particle-reinforced aluminum metal matrix composite. A coupled two-temperature molecular dynamics model is used to calculate the thermal conductivity of the Al/SiC interface. The electronic effects on the interfacial thermal conductivity are studied. A homogenized finite element model with embedded thin interfacial elements is used to predict the properties of bulk materials, considering the microstructure. The effects of temperatures, SiC particle sizes, and volume fractions on the thermal conductivity are also studied. A good agreement is found between prediction results and experimental measurements. The successful prediction of thermal conductivity could help a better understanding and an improvement of thermal transport within composites and ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.