Abstract

Collagen in the form of fibers or fibrils is an essential source of strength and structural integrity in most organs of the human body. Recently, with the help of complex experimental setups, a paradigm change concerning the mechanical contribution of proteoglycans (PGs) took place. Accordingly, PG connections protect the surrounding collagen fibrils from over-stretching rather than transmitting load between them. In this paper, we describe the reported PG mechanics and incorporate it into a multi-scale model of soft fibrous tissues. To this end, a nano-to-micro model of a single collagen fiber is developed by taking the entropic-energetic transition on the collagen molecule level into account. The microscopic damage occurring inside the collagen fiber is elucidated by sliding of PGs as well as by over-stretched collagen molecules. Predictions of this two-constituent-damage model are compared to experimental data available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.