Abstract

We propose a multi-group, multi-scale mathematical model to investigate the betweenhost and within-host dynamics of cholera. At the between-host level, we divide the total population into a number of host groups with different characteristics representing spatial heterogeneity. Our model incorporates the dual transmission pathways that include both the environment-to-human and human-to-human transmission routes. At the within-host level, our model describes the interaction among the pathogenic bacteria, viruses, and host immune response. For each host group, we couple the between-host disease transmission and within-host pathogen dynamics at different time scales. Our study thus integrates multi-scale modeling and multi-group modeling into one single framework. We describe the general modeling framework and demonstrate it through two specific and biologically important cases. We conduct detailed analysis for each case and obtain threshold results regarding the multi-scale dynamics of cholera in a spatially heterogeneous environment. In particular, we find that the between-host reproduction number is shaped by the collection of the disease risk factors from all the individual host groups. Our findings highlight the importance of a whole-population approach for cholera prevention and intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.