Abstract

AbstractIn this work a coupled two‐scale beam model using Timoshenko beam elements [1] with finite displacements on the macro scale and fully non‐linear 3D brick elements on the micro scale is proposed. The calculation is carried out with the so‐called FE2 concept. To achieve the coupling between the beam and the brick elements, the algorithm from [2] is adapted.Within the degenerated concept of the Timoshenko beam, the introduction of a pure shear deformation leads to significant problems concerning the equilibrium condition on the micro scale. Applying this deformation mode on the RVE with periodic boundary conditions results in a rigid body rotation. Using linear displacement boundary conditions instead, the wrapping deformation is suppressed on the boundary, leading to a length dependency in the torsional deformation mode. In addition, the shear forces introduce a bending moment, which depends on the length of the RVE and adds spurious normal stresses and a length dependency of the shear stiffness.To overcome these problems, periodic boundary conditions are applied and the displacement assumptions are modified such that the shear deformation is achieved with force pairs on both ends of the RVE. The resulting model leads to length independent results in tension, bending and torsion and a domain which is able to produce a pure shear stress state. Consequently, only this domain of the model should be homogenized which can be accomplished by modifying the variations in the algorithm [2]. The concept is validated by simple linear and non‐linear test problems. (© 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.