Abstract

BackgroundThe Eustachian tube is a collapsible upper respiratory airway that is periodically opened to maintain a healthy middle ear. Young children, <10 years old, exhibit reduced Eustachian tube opening efficiency and are at risk for developing middle ear infections. Although these infections increase mucosal adhesion, it is not known how adhesion forces alters the biomechanics of Eustachian tube opening in young children. This study uses computational techniques to investigate how increased mucosal adhesion alters Eustachian tube function in young children. MethodsMulti-scale finite element models were used to simulate the muscle-assisted opening of the Eustachian tube in healthy adults and young children. Airflow during opening was quantified as a function of adhesion strength, muscle forces and tissue mechanics. FindingsAlthough Eustachian tube function was sensitive to increased mucosal adhesion in both adults and children, young children developed Eustachian tube dysfunction at significantly lower values of mucosal adhesion. Specifically, the critical adhesion value was 2 orders of magnitude lower in young children as compared to healthy adults. Although increased adhesion did not alter the sensitivity of Eustachian tube function to tensor and levator veli palatini muscles forces, increased adhesion in young children did reduced the sensitivity of Eustachian tube function to changes in cartilage and mucosal tissue stiffness. InterpretationsThese results indicate that increased mucosal adhesion can significantly alter the biomechanical mechanisms of Eustachian tube function in young children and that clinical assessment of adhesion levels may be important in therapy selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call