Abstract

This paper concerns engineered composites integrating metallic particles to enhance thermal and electrical properties. However, these properties are strongly dependent on the forming process itself that determines the particle distribution and orientation. At the same time, the resulting enhanced thermal properties affect the reinforced resin viscosity whose flow is involved in the intimate contact evolution. Thus, a subtle and intricate coupling appears, and the process cannot be defined by ignoring it. In this paper, we analyze the effects of particle concentration and orientation on the process and processability. For this purpose, three main models are combined: (i) a multi-scale surface representation and its evolution, by using an appropriate numerical model; (ii) flow-induced orientation, and (iii) the impact of the orientation state on the homogenized thermal conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.