Abstract

We address the problem of modeling and rendering granular materials---such as large structures made of sand, snow, or sugar---where an aggregate object is composed of many randomly oriented, but discernible grains. These materials pose a particular challenge as the complex scattering properties of individual grains, and their packing arrangement, can have a dramatic effect on the large-scale appearance of the aggregate object. We propose a multi-scale modeling and rendering framework that adapts to the structure of scattered light at different scales. We rely on path tracing the individual grains only at the finest scale, and---by decoupling individual grains from their arrangement---we develop a modular approach for simulating longer-scale light transport. We model light interactions within and across grains as separate processes and leverage this decomposition to derive parameters for classical radiative transport, including standard volumetric path tracing and a diffusion method that can quickly summarize the large scale transport due to many grain interactions. We require only a one-time precomputation per exemplar grain, which we can then reuse for arbitrary aggregate shapes and a continuum of different packing rates and scales of grains. We demonstrate our method on scenes containing mixtures of tens of millions of individual, complex, specular grains that would be otherwise infeasible to render with standard techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.