Abstract

Macroscopic and microscopic mechanical properties, and damage behaviors of materials should be evaluated through multi-scale investigations to allow for practical industrial applications and promote user safety. Clad metal, a type of heterostructured material, is one of the most promising advanced materials for commercialization. However, heterostructured materials (e.g., clad metals, multi-phase metals, and composite metals) are limited by the possible deterioration of their mechanical properties caused by the strain partitioning at the interface of dissimilar phases when heavily deformed. Therefore, quantitative analysis of multi-scale damage development is necessary for the beneficial future utilization of clad metals as well as structural materials that are currently used in the industry. In this study, the mechanical properties and damage behaviors of Al1050/low-carbon steel/Al1050 clad sheet at multiple scales were quantitatively analyzed using macro-scale digital image correlation (DIC) and micro-scale DIC techniques. The multi-scale investigation results will contribute to the improvement of the reliability of clad materials by quantitatively identifying their mechanical properties and damage behaviors on various scales, which will be beneficial for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call