Abstract
Recently, neural implicit function-based representation has attracted more and more attention, and has been widely used to represent surfaces using differentiable neural networks. However, surface reconstruction from point clouds or multi-view images using existing neural geometry representations still suffer from slow computation and poor accuracy. To alleviate these issues, we propose a multi-scale hash encoding-based neural geometry representation which effectively and efficiently represents the surface as a signed distance field. Our novel neural network structure carefully combines low-frequency Fourier position encoding with multi-scale hash encoding. The initialization of the geometry network and geometry features of the rendering module are accordingly redesigned. Our experiments demonstrate that the proposed representation is at least 10 times faster for reconstructing point clouds with millions of points. It also significantly improves speed and accuracy of multi-view reconstruction. Our code and models are available at https://github.com/Dengzhi-USTC/Neural-Geometry-Reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.