Abstract
Several methods exist for measuring the complexity in a system through analysis of its associated time series. Multi-scale entropy appears as a successful method on this matter. It has been applied in many disciplines with great achievements. For example by analysis of the bio-signals, we are able to diagnose various diseases. However, in most versions for the multi-scale entropy the examined time series is analyzed qualitatively. In this study, we try to present a quantitative picture for the multi-scale entropy analysis. Particularly, we focus on finding relation between the result of the multi-scale analysis and the Hurst exponent which quantifies the persistence in time series. For this purpose, the fractional Gaussian noise time series with different Hurst exponents are analyzed by the multi-scale entropy method and the results are fitted to a decreasing q-exponential function. We observe remarkable relation between the function parameters and Hurst exponent. This function can simulate the result of analysis for the white noise to the 1∕f noise.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.