Abstract

The chela of the hermit crab protects its body against the attack from predators. Yet, a deep understanding of this mechanical defense is still lacking. Here, we investigate the chela of hermit crab, Coenobita brevimanus, and establish the relationships between the microstructures, chemical compositions and mechanical properties to gain insights into its biomechanical functions. We find that the chela is a multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, an increase of the calcium carbonate content towards the layer furthest from the exterior, unlike the chemical gradients of many crustacean exoskeletons, provides a strong resistance to deformation. Nanoindentation measurements reveal that the overall gradient of the elastic modulus and hardness in the cross-section displays a sandwich profile, i.e., a soft core clamped by two stiff surface layers. Further mechanics modeling demonstrates that the high curvature and stiff innermost sublayer enhance the structural rigidity of the chela. In conjunction with the experimental observations, dynamic finite element analysis maps the time-spatial distribution of principal stress and indicates that fiber bridging might be the major mechanism against crack propagation at microscale. The lessons gained from the study of this multiphase biological composite could provide important insights into the design and fabrication of bioinspired materials for structural applications. Statement of significanceMultiple hierarchical structures have been discovered in a variety of exoskeletons. They are naturally designed to maintain the structural integrity and act as a protective layer for the animals. However, each kind of the hierarchical structures has its unique topology, chemical gradients as well as mechanical properties. We find that the chela is multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, a large amount of helicoidal organic fibrils form highly organized 3D woven matrix in the innermost layer, providing a strong mechanical resistance to avoid catastrophic failure. The overall gradient of the elastic modulus and hardness in the cross-section display a sandwich profile, effectively minimizing the stress concentration and deformation. The lessons gained from the multiscale design strategy of the chela provide important insights into the design and fabrication of bioinspired materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.