Abstract

In response to the demand for the ultra-high stability and light-weight optical structure in high-resolution spacecraft, the present study proposes a novel carbon/carbon (C/C) honeycomb structure which integrates the superiorities of C/C composite and honeycomb structure. The C/C honeycomb was fabricated by chemical vapor infiltration (CVI) processing with continuous carbon fiber preform, and then the L- and W-direction shear experiments were conducted. A multi-scale damage model is established to describe the mechanical and damage behavior of the C/C honeycomb, which includes the damage model and constitutive model in both meso-scale and macro-scale. The effects of yarn orientation, side length, wall thickness and height of C/C honeycomb on L- and W-direction shear characteristics as well as damage modes of the novel C/C honeycomb are comprehensively researched. The results show that the C/C honeycomb has excellent shear properties when the yarn orientation is ±45° as well as the side length and wall thickness are about l=6mm and t=0.3mm, respectively. With the yarn orientation shifts from 0°/90° to ±45°, the damage region transforms from top and bottom surfaces of the C/C honeycomb structure to honeycomb walls. As the side length increases and the wall thickness decreases, the damage region is distributed obliquely along the honeycomb wall. This research contributes to the design and optimization of optical-mechanical structures in high-resolution spacecraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call