Abstract
Segmentation of orbital tumors in CT images is of great significance for orbital tumor diagnosis, which is one of the most prevalent diseases of the eye. However, the large variety of tumor sizes and shapes makes the segmentation task very challenging, especially when the available annotation data islimited. To this end, in this paper, we propose a multi-scale consistent self-training network (MSCINet) for semi-supervised orbital tumor segmentation. Specifically, we exploit the semantic-invariance features by enforcing the consistency between the predictions of different scales of the same image to make the model more robust to size variation. Moreover, we incorporate a new self-training strategy, which adopts iterative training with an uncertainty filtering mechanism to filter the pseudo-labels generated by the model, to eliminate the accumulation of pseudo-label error predictions and increase the generalization of themodel. For evaluation, we have built two datasets, the orbital tumor binary segmentation dataset (Orbtum-B) and the orbital multi-organ segmentation dataset (Orbtum-M). Experimental results on these two datasets show that our proposed method can both achieve state-of-the-art performance. In our datasets, there are a total of 55 patients containing 602 2Dimages. In this paper, we develop a new semi-supervised segmentation method for orbital tumors, which is designed for the characteristics of orbital tumors and exhibits excellent performance compared to previous semi-supervisedalgorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.