Abstract
This paper proposes a concurrent topology optimization method for optimizing the structures that are periodically filled with multiple microstructures excited by dynamic response in the time domain. At the macroscale, different microstructures are considered as different materials. To generate the various distribution of different microstructures, a multi-material interpolation approach based on the Solid Isotropic Material with Penalization (SIMP) is integrated. At the microscale, the energy-based homogenization method (EBHM) is employed to determine the macroscopic effective properties of the microstructures. All macroscale elements with identical material are represented by a distinct microstructure. For the proportional damping model, the HHT-α is implemented as a time integration technique to obtain the dynamic response of multi-scale and assumed multi-material structures. The objective function of the topology optimization problem is to minimize the mean dynamic compliance. Combined differentiate-then-discretize method with the adjoint variable method, the sensitivity analysis applies the gradient-based Zhang-Paulino-Ramos Jr. (ZPR) algorithm or Method of Moving Asymptotes (MMA) to update the design variables under multiple constraints in the time and space-discretized system. The proposed approach is numerically performed through 2D and 3D examples to demonstrate its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.