Abstract
SiC fiber-reinforced SiC matrix composites (SiC/SiC) are under consideration as a structural material for a range of nuclear applications. While these materials have been studied for decades, recently new small scale materials testing techniques have emerged which can be used to characterize SiC/SiC materials from a new perspective. In this work cross section nanoindentation was performed on SiC/SiC composites revealing that both the hardness and Young’s modulus was substantially lower in the fiber compared to the matrix despite both being SiC. Using a Scanning Electron Microscopy (SEM) it was observed that the grain growth of the matrix during formation was radially out from the fiber with a changing grain structure as a function of radius from the fiber center. Focused ion beam machining was used to manufacture micro-cantilever samples and evaluate the fracture toughness and fracture strength in the matrix as a function of grain orientation in the matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.