Abstract

Abstract This paper deals with the influence of the manufacturing process on the fatigue behavior of pearlitic steels with different degrees of cold drawing. The fatigue crack growth rate (da/dN) is related to the stress intensity range (ΔK) by means a compliance method to evaluate the crack depth a in the samples at any instant during the tests. The analysis is focused on the Region II (Paris) of the fatigue behavior in which da/dN=C(ΔK)m, measuring the constants (C and m) for the different degrees of drawing. From the engineering point of view, the manufacturing process by cold drawing improves the fatigue behavior of the steels, since the fatigue crack growth rate decreases as the strain hardening level in the material increases. In particular, the coefficient m (slope of the Paris Law) remains almost constant and independent of the drawing degree, whereas the constant C decreases as the drawing degree rises. The paper focuses on the relationship between the pearlitic microstructure of the steels (progressively oriented as a consequence of the manufacturing process by cold drawing) and the macroscopic fatigue behavior. To this end, a detailed metallographic analysis was performed on the fatigue crack propagation path after cutting and polishing on a plane perpendicular to the crack front. It is seen that the fatigue crack growth path presents certain roughness at the microscopic level, such a roughness being related to the pearlitic colony boundaries more than to the ferrite/cementite lamellae interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call