Abstract

Multi-scale analysis of laminated composite plates with viscoelastic–viscoplastic behavior of matrix is studied. Simplified unit cell method is developed to derive a new formulation for analysis of composite materials, including viscoelastic–viscoplastic matrix. The viscoelastic behavior of the matrix is modeled using Boltzmann superposition principle and the creep compliance is modeled using Prony series. Zapas–Crissman functional model is applied to obtain viscoplastic behavior of the matrix. In structural level, equations of equilibrium of laminated composite plate in terms of displacements have been derived using first order shear deformation theory with von Karman kinematic nonlinearity type. The nonlinear equations of equilibrium of plate are solved using generalized differential quadrature method. The details of the multi-scale analysis process have been discussed. Results include the effect of different parameters on creep behavior of composite materials in microscale and also micro-macro analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.