Abstract

Land subsidence is a major issue in the Beijing Plain in China, caused by the construction of new buildings and infrastructure combined with groundwater extraction. This study employs a multi-level two-dimensional wavelet decomposition to decompose land subsidence into high- and low-frequency components, and Moran’s I index to analyze the spatial distribution of land subsidence and its main influencing factors. By comparing the spatial distributions of the high- and low-frequency components, we estimate the correlation between land subsidence and influencing factors at different scales. Utilizing a combination of wavelet decomposition and Moran’s I analysis, our study establishes a clear spatial correlation between continuously varying factors such as groundwater and clay layer thickness, and the low-frequency components of land subsidence, allowing for a focused analysis of the relationship between surface building density and the high-frequency components of land subsidence. Quantitatively, the study identifies a significant correlation at specific granularities, particularly at 480 m and 960 m, underscoring the nuanced interaction between urban development and land subsidence patterns. These insights into the spatial distribution of land subsidence and its contributing factors can inform the development of effective strategies to address this issue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call