Abstract
The performance of advanced functional materials for fuel cell applications are closely linked to the material composition and morphology at the micro and nano-scales. 3D characterization techniques that can provide bulk information at these fine scales are therefore essential for microstructure optimization of these materials. Here, the X-ray nano-holotomography technique is used to image various multi-phase and absorbing solid oxide fuel cell electrodes. Different porous structures for typical commercial cells and innovative electrode designs obtained using a freeze-casting process are studied. Taking advantage of the geometrical setup and the use of high energy X-rays, both large reconstructions (field of view: 150 µm) and local tomography at higher resolution (field of view: 50 µm) can be performed on the same sample to have a multi-scale approach. This produces highly representative sample volumes with a size/resolution ratio that allows the geometric and physical properties of the materials to be calculated, e.g., connectivity of each phase, mean particles diameters, specific surface area, particle size distributions, tortuosity factors, and densities of triple boundary lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.