Abstract

The spectral mechanisms of the differential diffusion of pairs of passive scalars with different molecular diffusivities are studied in stationary isotropic turbulence, using direct numerical simulation data at Taylor-scale Reynolds number up to 160 on 1283 and 2563 grids. Of greatest interest are the roles of nonlinear triadic interactions between different scale ranges of the velocity and scalar fields in the evolution of spectral coherency between the scalars, and the effects of mean scalar gradients.Analysis of single-scalar spectral transfer (extending the results of a previous study) indicates a robust local forward cascade behaviour at high wavenumbers, which is strengthened by both high diffusivity and mean gradients. This cascade is driven primarily by moderately non-local interactions in which two small-scale scalar modes are coupled via a lower-wavenumber velocity mode near the peak of the energy dissipation spectrum. This forward cascade is coherent, tending to increase the coherency between different scalars at high wavenumbers but to decrease it at lower wavenumbers. However, at early times coherency evolution at high wavenumbers is dominated by de-correlating effects due to a different type of non-local triad consisting of two scalar modes with a moderate scale separation and a relatively high-wavenumber velocity mode. Consequently, although the small-scale motions play little role in spectral transfer, they are responsible for the rapid de-correlation observed at early times. At later times both types of competing triadic interactions become important over a wider wavenumber range, with increased relative strength of the coherent cascade, so that the coherency becomes slow-changing. When uniform mean scalar gradients are present, a stationary state develops in the coherency spectrum as a result of a balance between a coherent mean gradient contribution (felt within about 1 eddy-turnover time) and the net contribution from scale interactions. The latter is made less de-correlating because of a strengthened coherent forward cascade, which is in turn caused by uniform mean gradients acting as a primarily low-wavenumber source of scalar fluctuations with the same spectral content as the velocity field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.