Abstract
Improving the safety monitoring of underground pipelines is crucial for maintaining the structural integrity of critical infrastructure systems. This study introduces an innovative multi-sample joint localization method (MSJLM) based on cross-correlation convolutional neural networks (CC-CNNs) to identify intrusion sources in the vicinity of underground pipelines. Traditional approaches to detecting and locating pipeline intrusions often rely on a solitary sensor monitoring point, making them susceptible to errors and limitations. Presently, widely used distributed optical fiber testing methods tend to yield imprecise localization. In contrast, the MSJLM proposed in this study harnesses data from multiple samples effectively and combines them via correlation analyses to enhance precision and reliability. The CC-CNN framework used to process the collected data is demonstrated to be highly effective in extracting spatial features and recognizing patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.