Abstract
Time-course imaging experiments on live organisms are critical for understanding the dynamics of growth and development. Light-sheet microscopy has advanced the field of long-term imaging of live specimens by significantly reducing photo-toxicity and allowing fast acquisition of three-dimensional data over time. However, current light-sheet technology does not allow the imaging of multiple plant specimens in parallel. To achieve higher throughput, we have developed a Multi-sample Arabidopsis Growth and Imaging Chamber (MAGIC) that provides near-physiological imaging conditions and allows high-throughput time-course imaging experiments in the ZEISS Lightsheet Z.1. Here, we illustrate MAGIC's imaging capabilities by following cell divisions, as an indicator of plant growth and development, over prolonged time periods. To automatically quantify the number of cell divisions in long-term experiments, we present a FIJI-based image processing pipeline. We demonstrate that plants imaged with our chamber undergo cell divisions for >16 times longer than those with the glass capillary system supplied by the ZEISS Z1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.