Abstract

Circuit breakers (CBs) are mainly designed to interrupt current flow when faults are detected and have been widely used in industrial applications. The existing CBs manufacturing method is semi-automatic and requires a lot of labor. To realize flexible manufacturing, a multi-robot cooperative CBs flexible manufacturing system (CBFMS) is presented in this study. Aiming at the efficiency of the multi-robot cooperative CBFMS key units, a two-arm cooperation robot approach is proposed. The reinforcement learning algorithm is developed to optimize the manufacturing trajectory of the two-arm cooperation robot. To build and optimize the multi-robot cooperative CBFMS, a digital twin (DT) system describing all physical properties of the physical manufacturing plant is constructed for simulation. In the developed DT system, a kinematic control model of the collaboration robot is established. A real-time display of the robot’s trajectory, manufacturing status, and process manufacturing is provided by the data interaction with the physical cell flow between the units. Following this design, a synchronous mapping between the flexible manufacturing DT system of the CBs and the physical workshop is realized, which enables real-time monitoring and management of the physical production line. The experiments’ results show that the manufacturing efficiency, compared with traditional CBs production, is improved by 22%. Moreover, the multi-robot cooperative CBFMS can make process changes according to the production requirements, which can improve the stability of production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call