Abstract
Certain materials that are used in industries to manufacture parts, components and sub-assemblies are difficult to machine using traditional machining processes. Abrasive water jet machining is a viable solution to such a problem, and its use is sought where precision is the requirement. The process involves many input controllable parameters that influence the performance characteristics of the process such as MRR, surface finish and kerf width. Inconel-625 is one such hard-to-machine material that finds many applications in industries. The objective of the present work is set to ascertain experimentally the influence of three input parameters on the three responses mentioned above through ANOVA. WASPAS and MOORA are two powerful techniques that are used for multi-objective optimization, and the ranks of both the MCDM methods were observed to be same. Traverse speed and abrasive mass flow rate are proven to be statistically significant on MRR and surface finish, whereas standoff distance along with the above two parameters is also significant on the response kerf width. Machined surface morphology is studied using scanning electron microscopy. From the SEM morphology, it was confirmed that the higher abrasive flow rate obtained rough surface finish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.