Abstract
Many industrial experiments based on Taguchi's parameter design (PD) methodology deal with the optimization of a single performance quality characteristic. Studies have shown that the optimal factor settings for one performance characteristic are not necessarily compatible with those of other performance characteristics. Multi-response problems have received very little attention among industrial engineers and Taguchi practitioners. Many Taguchi practitioners have employed engineering judgement for determining the final optimal condition when several responses are to be optimized. However, this approach always brings some level of uncertainty to the decision-making process and is very subjective in nature. In order to rectify this problem, the author proposes an alternative approach using a powerful multivariate statistical method called principal component analysis (PCA). The paper also presents a case study in order to demonstrate the potential of this approach. Copyright © 2000 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.